首页
关于
壁纸
直播
留言
友链
统计
Search
1
《三国志英杰传》攻略
6,338 阅读
2
Emby客户端IOS破解
6,209 阅读
3
白嫖Emby
6,202 阅读
4
《吞食天地1》金手指代码
6,094 阅读
5
破解emby-server
4,375 阅读
moonjerx
game
age-of-empires
zx3
san-guo-zhi
尼尔:机械纪元
net
emby
learn-video
docker
torrent
photoshop
route
minio
git
ffmpeg
im
vue
gitlab
typecho
svn
alipay
nasm
srs
mail-server
tailscale
kkfileview
aria2
webdav
synology
redis
oray
chemical
mxsite
math
π
x-ui
digital-currency
server
nginx
baota
k8s
http
cloud
linux
shell
database
vpn
esxi
rancher
domain
k3s
ewomail
os
android
windows
ios
app-store
macos
develop
java
javascript
uniapp
nodejs
hbuildx
maven
android-studio
jetbrain
jenkins
css
mybatis
php
python
hardware
hard-disk
pc
RAM
software
pt
calibre
notion
office
language
literature
philosophy
travel
登录
Search
标签搜索
ubuntu
mysql
openwrt
zerotier
springboot
centos
openvpn
jdk
吞食天地2
synology
spring
idea
windows11
吞食天地1
transmission
google-play
Japanese
xcode
群晖
kiftd
MoonjerX
累计撰写
380
篇文章
累计收到
465
条评论
首页
栏目
moonjerx
game
age-of-empires
zx3
san-guo-zhi
尼尔:机械纪元
net
emby
learn-video
docker
torrent
photoshop
route
minio
git
ffmpeg
im
vue
gitlab
typecho
svn
alipay
nasm
srs
mail-server
tailscale
kkfileview
aria2
webdav
synology
redis
oray
chemical
mxsite
math
π
x-ui
digital-currency
server
nginx
baota
k8s
http
cloud
linux
shell
database
vpn
esxi
rancher
domain
k3s
ewomail
os
android
windows
ios
app-store
macos
develop
java
javascript
uniapp
nodejs
hbuildx
maven
android-studio
jetbrain
jenkins
css
mybatis
php
python
hardware
hard-disk
pc
RAM
software
pt
calibre
notion
office
language
literature
philosophy
travel
页面
关于
壁纸
直播
留言
友链
统计
搜索到
53
篇与
moonjerx
的结果
2022-12-16
docker运行zerotier
moon安装docker run --name=11011-ztmoon --restart=always -d -p 11012:9993/udp -p 11011:3443 -v /volume1/docker/zerotier/ztmoon/ztncui:/opt/key-networks/ztncui/etc -v /volume1/docker/zerotier/ztmoon/zt1:/var/lib/zerotier-one --env-file ./denv keynetworks/ztncui docker run --name=zeroui --restart=always -d -p 9993:9993/udp -p 14000:3443 -p 3180:3180 -v /allroot/dockerdata/zerotier-moon/ztncui:/opt/key-networks/ztncui/etc -v /allroot/dockerdata/zerotier-moon/zo:/var/lib/zerotier-one --env-file ./denv keynetworks/ztncuidocker run -d --restart=always \ -p9993:9993/udp -p24000:3443 \ -p3181:3180 -p3010:3000 \ -v /home/$USER/dockerfile/zerotier/ztncui-moon/ztncui:/opt/key-networks/ztncui/etc \ -v /home/$USER/dockerfile/zerotier/ztncui-moon/zt1:/var/lib/zerotier-one \ -e HTTP_PORT=3000 \ -e NODE_ENV="production" \ -e HTTP_ALL_INTERFACES="yes" \ -e ZTNCUI_PASSWD="zero.c0m!" \ -e MYDOMAIN="ztmoon.moonjer.com" \ -e MYADDR="120.25.3.175" \ --name ztmoon \ ztncui-moon:latest -4 120.25.3.175 -p 9995docker run -d --restart=always \ -p9995:9993/udp -p3443:3443 \ -p3180:3180 -p3010:3000 \ -v /home/$USER/dockerfile/zerotier/ztncui-moon/ztncui:/opt/key-networks/ztncui/etc \ -v /home/$USER/dockerfile/zerotier/ztncui-moon/zt1:/var/lib/zerotier-one \ -e HTTP_PORT=3000 \ -e NODE_ENV="production" \ -e HTTP_ALL_INTERFACES="yes" \ -e ZTNCUI_PASSWD="zero1111" \ -e MYDOMAIN="ztmoon.moonjer.com" \ -e MYADDR="120.25.3.175" \ --name ztmoon \ ztncui-moon:latest -4 120.25.3.175 -p 9995client安装docker run -d \ --name ztclient \ --restart=always \ --device=/dev/net/tun \ --net=host \ --cap-add=NET_ADMIN \ --cap-add=SYS_ADMIN \ -v /home/$USER/dockerfile/zerotier/ztclient/zt-one:/var/lib/zerotier-one zerotier/zerotier-synology:latest
2022年12月16日
106 阅读
0 评论
0 点赞
2022-12-12
别人的字节面经
如果你知道 MySQL 一行记录的存储结构,那么这个问题对你没什么难度。如果你不知道也没关系,这次我跟大家聊聊 MySQL 一行记录是怎么存储的?知道了这个之后,除了能应解锁前面这道面试题,你还会解锁这些面试题:MySQL 的 NULL 值会占用空间吗?MySQL 怎么知道 varchar(n) 实际占用数据的大小?varchar(n) 中 n 最大取值为多少?行溢出后,MySQL 是怎么处理的?这些问题看似毫不相干,其实都是在围绕「 MySQL 一行记录的存储结构」这一个知识点,所以攻破了这个知识点后,这些问题就引刃而解了。MySQL 的数据存放在哪个文件?大家都知道 MySQL 的数据都是保存在磁盘的,那具体是保存在哪个文件呢?MySQL 存储的行为是由存储引擎实现的,MySQL 支持多种存储引擎,不同的存储引擎保存的文件自然也不同。InnoDB 是我们常用的存储引擎,也是 MySQL 默认的存储引擎。所以,本文主要以 InnoDB 存储引擎展开讨论。先来看看 MySQL 数据库的文件存放在哪个目录?mysql> SHOW VARIABLES LIKE 'datadir'; +---------------+-----------------+ | Variable_name | Value | +---------------+-----------------+ | datadir | /var/lib/mysql/ | +---------------+-----------------+ 1 row in set (0.00 sec)我们每创建一个 database(数据库) 都会在 /var/lib/mysql/ 目录里面创建一个以 database 为名的目录,然后保存表结构和表数据的文件都会存放在这个目录里。比如,我这里有一个名为 my_test 的 database,该 database 里有一张名为 t_order 数据库表。然后,我们进入 /var/lib/mysql/my_test 目录,看看里面有什么文件?[root@xiaolin ~]#ls /var/lib/mysql/my_test db.opt t_order.frm t_order.ibd可以看到,共有三个文件,这三个文件分别代表着:db.opt,用来存储当前数据库的默认字符集和字符校验规则。t_order.frm ,t_order 的表结构会保存在这个文件。在 MySQL 中建立一张表都会生成一个.frm 文件,该文件是用来保存每个表的元数据信息的,主要包含表结构定义。t_order.ibd,t_order 的表数据会保存在这个文件。表数据既可以存在共享表空间文件(文件名:ibdata1)里,也可以存放在独占表空间文件(文件名:表名字.idb)。这个行为是由参数 innodb_file_per_table 控制的,若设置了参数 innodb_file_per_table 为 1,则会将存储的数据、索引等信息单独存储在一个独占表空间,从 MySQL 5.6.6 版本开始,它的默认值就是 1 了,因此从这个版本之后, MySQL 中每一张表的数据都存放在一个独立的 .idb 文件。好了,现在我们知道了一张数据库表的数据是保存在「 表名字.idb 」的文件里的,这个文件也称为独占表空间文件。那这个表空间文件的结构是怎么样的?表空间由段(segment)、区(extent)、页(page)、行(row)组成 ,InnoDB存储引擎的逻辑存储结构大致如下图:下面我们从下往上一个个看看。1、行(row)数据库表中的记录都是按行(row)进行存放的,每行记录根据不同的行格式,有不同的存储结构。后面我们详细介绍 InnoDB 存储引擎的行格式,也是本文重点介绍的内容。2、页(page)记录是按照行来存储的,但是数据库的读取并不以「行」为单位,否则一次读取(也就是一次 I/O 操作)只能处理一行数据,效率会非常低。因此,InnoDB 的数据是按「页」为单位来读写的,也就是说,当需要读一条记录的时候,并不是将这个行记录从磁盘读出来,而是以页为单位,将其整体读入内存。默认每个页的大小为 16KB,也就是最多能保证 16KB 的连续存储空间。页是 InnoDB 存储引擎磁盘管理的最小单元,意味着数据库每次读写都是以 16KB 为单位的,一次最少从磁盘中读取 16K 的内容到内存中,一次最少把内存中的 16K 内容刷新到磁盘中。页的类型有很多,常见的有数据页、undo 日志页、溢出页等等。数据表中的行记录是用「数据页」来管理的,数据页的结构这里我就不讲细说了,之前文章有说过,感兴趣的可以去看这篇文章:换一个角度看 B+ 树总之知道表中的记录存储在「数据页」里面就行。3、区(extent)我们知道 InnoDB 存储引擎是用 B+ 树来组织数据的。B+ 树中每一层都是通过双向链表连接起来的,如果是以页为单位来分配存储空间,那么链表中相邻的两个页之间的物理位置并不是连续的,可能离得非常远,那么磁盘查询时就会有大量的随机I/O,随机 I/O 是非常慢的。解决这个问题也很简单,就是让链表中相邻的页的物理位置也相邻,这样就可以使用顺序 I/O 了,那么在范围查询(扫描叶子节点)的时候性能就会很高。那具体怎么解决呢?在表中数据量大的时候,为某个索引分配空间的时候就不再按照页为单位分配了,而是按照区(extent)为单位分配。每个区的大小为 1MB,对于 16KB 的页来说,连续的 64 个页会被划为一个区,这样就使得链表中相邻的页的物理位置也相邻,就能使用顺序 I/O 了。4、段(segment)表空间是由各个段(segment)组成的,段是由多个区(extent)组成的。段一般分为数据段、索引段和回滚段等。索引段:存放 B + 树的非叶子节点的区的集合;数据段:存放 B + 树的叶子节点的区的集合;回滚段:存放的是回滚数据的区的集合,之前讲事务隔离的时候就介绍到了 MVCC 利用了回滚段实现了多版本查询数据。好了,终于说完表空间的结构了。接下来,就具体讲一下 InnoDB 的行格式了。之所以要绕一大圈才讲行记录的格式,主要是想让大家知道行记录是存储在哪个文件,以及行记录在这个表空间文件中的哪个区域,有一个从上往下切入的视角,这样理解起来不会觉得很抽象。InnoDB 行格式有哪些?行格式(row_format),就是一条记录的存储结构。InnoDB 提供了 4 种行格式,分别是 Redundant、Compact、Dynamic和 Compressed 行格式。Redundant 是很古老的行格式了, MySQL 5.0 版本之前用的行格式,现在基本没人用了。由于 Redundant 不是一种紧凑的行格式,所以 MySQL 5.0 之后引入了 Compact 行记录存储方式,Compact 是一种紧凑的行格式,设计的初衷就是为了让一个数据页中可以存放更多的行记录,从 MySQL 5.1 版本之后,行格式默认设置成 Compact。Dynamic 和 Compressed 两个都是紧凑的行格式,它们的行格式都和 Compact 差不多,因为都是基于 Compact 改进一点东西。从 MySQL5.7 版本之后,默认使用 Dynamic 行格式。Redundant 行格式我这里就不讲了,因为现在基本没人用了,这次重点介绍 Compact 行格式,因为 Dynamic 和 Compressed 这两个行格式跟 Compact 非常像。所以,弄懂了 Compact 行格式,之后你们在去了解其他行格式,很快也能看懂。COMPACT 行格式长什么样?先跟 Compact 行格式混个脸熟,它长这样:可以看到,一条完整的记录分为「记录的额外信息」和「记录的真实数据」两个部分。接下里,分别详细说下。记录的额外信息记录的额外信息包含 3 个部分:变长字段长度列表、NULL 值列表、记录头信息。1. 变长字段长度列表varchar(n) 和 char(n) 的区别是什么,相信大家都非常清楚,char 是定长的,varchar 是变长的,变长字段实际存储的数据的长度(大小)不固定的。所以,在存储数据的时候要把这些数据占用的字节数也存起来,存到「变长字段长度列表」里面,读取数据的时候才能根据这个「变长字段长度列表」去读取对应长度的数据。其他 TEXT、BLOB 等变长字段也是这么实现的。为了展示「变长字段长度列表」具体是怎么保存变长字段占用的字节数,我们先创建这样一张表,字符集是 ascii(所以每一个字符占用的 1 字节),行格式是 Compact,t_user 表中 name 和 phone 字段都是变长字段:CREATE TABLE `t_user` ( `id` int(11) NOT NULL, `name` VARCHAR(20) NOT NULL, `phone` VARCHAR(20) DEFAULT NULL, `age` int(11) DEFAULT NULL, PRIMARY KEY (`id`) USING BTREE ) ENGINE = InnoDB DEFAULT CHARACTER SET = ascii ROW_FORMAT = COMPACT;现在 t_user 表里有这三条记录:接下来,我们看看看看这三条记录的行格式中的 「变长字段长度列表」是怎样存储的。先来看第一条记录:name 列的值为 a,长度是 1 字节,十六进制 0x01phone 列的值为 123,长度是 3 字节,十六进制 0x03age 列和 id 列不是变长字段,所以这里不用管。这些变长字段的长度值会按照列的顺序逆序存放(等下会说为什么要这么设计),所以「变长字段长度列表」里的内容是「 03 01」,而不是 「01 03」。同样的道理,我们也可以得出第二条记录的行格式中,「变长字段长度列表」里的内容是「 04 02」,如下图:第三条记录中 phone 列的值是 NULL,NULL 是不会存放在行格式中记录的真实数据部分里的,所以「变长字段长度列表」里不需要保存值为 NULL 的变长字段的长度。为什么「变长字段长度列表」的信息要按照逆序存放?这个设计是有想法的,主要是因为「记录头信息」中指向下一个记录的指针,指向的是下一条记录的「记录头信息」和「真实数据」之间的位置,这样的好处是向左读就是记录头信息,向右读就是真实数据,比较方便。「变长字段长度列表」中的信息之所以要逆序存放,是因为这样可以使得位置靠前的记录的真实数据和数据对应的字段长度信息可以同时在一个 CPU Cache Line 中,这样就可以提高 CPU Cache 的命中率。同样的道理, NULL 值列表的信息也需要逆序存放。如果你不知道什么是 CPU Cache,可以看这篇文章:面试官:如何写出让 CPU 跑得更快的代码?,这属于计算机组成的知识。每个数据库表的行格式都有「变长字段字节数列表」吗?其实变长字段字节数列表不是必须的。当数据表没有变长字段的时候,比如全部都是 int 类型的字段,这时候表里的行格式就不会有「变长字段长度列表」了,因为没必要,不如去掉以节省空间。所以「变长字段长度列表」只出现在数据表有变长字段的时候。2. NULL 值列表表中的某些列可能会存储 NULL 值,如果把这些 NULL 值都放到记录的真实数据中会比较浪费空间,所以 Compact 行格式把这些值为 NULL 的列存储到 NULL值列表中。如果存在允许 NULL 值的列,则每个列对应一个二进制位(bit),二进制位按照列的顺序逆序排列。二进制位的值为1时,代表该列的值为NULL。二进制位的值为0时,代表该列的值不为NULL。另外,NULL 值列表必须用整数个字节的位表示(1字节8位),如果使用的二进制位个数不足整数个字节,则在字节的高位补 0。还是以 t_user 表的这三条记录作为例子:接下来,我们看看看看这三条记录的行格式中的 NULL 值列表是怎样存储的。先来看第一条记录,第一条记录所有列都有值,不存在 NULL 值,所以用二进制来表示是酱紫的:但是 InnoDB 是用整数字节的二进制位来表示NULL值列表的,现在不足 8 位,所以要在高位补 0,最终用二进制来表示是酱紫的:所以,对于第一条数据,NULL 值列表用十六进制表示是 0x00。接下来看第二条记录,第二条记录 age 列是 NULL 值,所以,对于第二条数据,NULL值列表用十六进制表示是 0x04。最后第三条记录,第三条记录 phone 列 和 age 列是 NULL 值,所以,对于第三条数据,NULL 值列表用十六进制表示是 0x06。我们把三条记录的 NULL 值列表都填充完毕后,它们的行格式是这样的:每个数据库表的行格式都有「NULL 值列表」吗?NULL 值列表也不是必须的。当数据表的字段都定义成 NOT NULL 的时候,这时候表里的行格式就不会有 NULL 值列表了。所以在设计数据库表的时候,通常都是建议将字段设置为 NOT NULL,这样可以节省 1 字节的空间(NULL 值列表占用 1 字节空间)。3. 记录头信息记录头信息中包含的内容很多,我就不一一列举了,这里说几个比较重要的:delete_mask :标识此条数据是否被删除。从这里可以知道,我们执行 detele 删除记录的时候,并不会真正的删除记录,只是将这个记录的 delete_mask 标记为 1。next_record:下一条记录的位置。从这里可以知道,记录与记录之间是通过链表组织的。在前面我也提到了,指向的是下一条记录的「记录头信息」和「真实数据」之间的位置,这样的好处是向左读就是记录头信息,向右读就是真实数据,比较方便。record_type:表示当前记录的类型,0表示普通记录,1表示B+树非叶子节点记录,2表示最小记录,3表示最大记录 记录的真实数据 记录真实数据部分除了我们定义的字段,还有三个隐藏字段,分别为:row_id、trx_id、roll_pointer,我们来看下这三个字段是什么。row_id如果我们建表的时候指定了主键或者唯一约束列,那么就没有 row_id 隐藏字段了。如果既没有指定主键,又没有唯一约束,那么 InnoDB 就会为记录添加 row_id 隐藏字段。row_id不是必需的,占用 6 个字节。trx_id事务id,表示这个数据是由哪个事务生成的。trx_id是必需的,占用 6 个字节。roll_pointer这条记录上一个版本的指针。roll_pointer 是必需的,占用 7 个字节。如果你熟悉 MVCC 机制,你应该就清楚 trx_id 和 roll_pointer 的作用了。varchar(n) 中 n 最大取值为多少?varchar(n) 字段类型的 n 代表的是最多存储的字符数量,那 n 最大能设置多少?这个问题要考虑两个因素:行格式中「变长字段长度列表」最大能表示多少字节?知道了这个才能知道,一行数据最大能存储多少字节的数据。数据库表的字符集,确定了这个,才能知道 1 个字符占用多少字节。行格式中「变长字段长度列表」有时候是占用 1 字节,有时候是占用 2 字节:如果变长字段允许存储的最大字节数小于等于 255 字节,「变长字段长度列表」就占用 1 个字节;如果变长字段允许存储的最大字节数大于 255 字节,「变长字段长度列表」就占用 2 个字节;可以看到,「 变长字段长度列表」占用的字节数最大不会不超过 2 字节。 2 个字节的最大值是 65535(十进制),从这里可以推测一行记录最大能存储 65535 字节的数据,实际上真的是这样吗?我这里以 ascii 字符集作为例子,这意味着 1 个字符占用 1 字节。那么 varchar(65535) 就意味着最多可存储 65535 个 ascii 字符,刚好满足一行记录最大能存储 65535 字节的数据。我们定义一个 varchar(65535) 类型的字段,字符集为 ascii 的数据库表。CREATE TABLE test ( `name` VARCHAR(65535) NULL ) ENGINE = InnoDB DEFAULT CHARACTER SET = ascii ROW_FORMAT = COMPACT;看能不能成功创建一张表:可以看到,创建失败了。从报错信息就可以知道一行数据的最大字节数是 65535(不包含 TEXT、BLOBs 这种大对象类型),其中包含了 storage overhead。问题来了,这个 storage overhead 是什么呢?其实就是变长字段长度列表和 NULL 值列表,也就是说一行数据的最大字节数 65535,其实是包含「变长字段长度列表」和 「NULL 值列表」所占用的字节数的。我们存储字段类型为 varchar(n) 的数据时,其实分成了三个部分来存储:真实数据真实数据占用的字节数NULL 标识,如果不允许为NULL,这部分不需要前面我创建表的时候,字段是允许为 NULL 的,所以会占用 1 字节来存储 NULL 标识,字段是变长字段且变长字段允许存储的最大字节数大于 255 字节 ,所以会占用 2 字节存储真实数据的占用的字节数,所以最多可以存储 65535- 2 - 1 = 65532 个字节。我们先来测试看看 varchar(65533) 是否可行?可以看到,还是不行,接下来看看 varchar(65532) 是否可行?可以看到,创建成功了。当然,我上面这个例子是针对字符集为 ascii 情况,如果采用的是 UTF-8,varchar(n) 最多能存储的数据计算方式就不一样了:在 UTF-8 字符集下,一个字符串最多需要三个字节,varchar(n) 的 n 最大取值就是 65532/3 = 21844。上面所说的只是针对于一个字段的计算方式。如果有多个字段的话,要保证所有字段的长度 + 变长字段字节数列表所占用的字节数 + NULL值列表所占用的字节数 <= 65535。行溢出后,MySQL 是怎么处理的?MySQL 中磁盘和内存交互的基本单位是页,一个页的大小一般是 16KB,也就是 16384字节,而一个 varchar(n) 类型的列最多可以存储 65532字节,一些大对象如 TEXT、BLOB 可能存储更多的数据,这时一个页可能就存不了一条记录。这个时候就会发生行溢出,多的数据就会存到另外的「溢出页」中。如果一个数据页存不了一条记录,InnoDB 存储引擎会自动将溢出的数据存放到「溢出页」中。在一般情况下,InnoDB 的数据都是存放在 「数据页」中。但是当发生行溢出时,溢出的数据会存放到「溢出页」中。当发生行溢出时,在记录的真实数据处只会保存该列的一部分数据,而把剩余的数据放在「溢出页」中,然后真实数据处用 20 字节存储指向溢出页的地址,从而可以找到剩余数据所在的页。大致如下图所示。上面这个是 Compact 行格式在发生行溢出后的处理。Compressed 和 Dynamic 这两个行格式和 Compact 非常类似,主要的区别在于处理行溢出数据时有些区别。这两种格式采用完全的行溢出方式,记录的真实数据处不会存储该列的一部分数据,只存储 20 个字节的指针来指向溢出页。而实际的数据都存储在溢出页中,看起来就像下面这样:总结MySQL 的 NULL 值是怎么存放的?MySQL 的 Compact 行格式中会用「NULL值列表」来标记值为 NULL 的列,NULL 值并不会存储在行格式中的真实数据部分。NULL值列表会占用 1 字节空间,当表中所有字段都定义成 NOT NULL,行格式中就不会有 NULL值列表,这样可节省 1 字节的空间。MySQL 怎么知道 varchar(n) 实际占用数据的大小?MySQL 的 Compact 行格式中会用「变长字段长度列表」存储变长字段实际占用的数据大小。varchar(n) 中 n 最大取值为多少?一行记录最大能存储 65535 字节的数据,但是这个是包含「变长字段字节数列表所占用的字节数」和「NULL值列表所占用的字节数」。如果一张表只有一个 varchar(n) 字段,且允许为 NULL,字符集为 ascii。varchar(n) 中 n 最大取值为 65532。计算公式:65535 - 变长字段字节数列表所占用的字节数 - NULL值列表所占用的字节数 = 65535 - 2 - 1 = 65532行溢出后,MySQL 是怎么处理的?如果一个数据页存不了一条记录,InnoDB 存储引擎会自动将溢出的数据存放到「溢出页」中。Compact 行格式针对行溢出的处理是这样的:当发生行溢出时,在记录的真实数据处只会保存该列的一部分数据,而把剩余的数据放在「溢出页」中,然后真实数据处用 20 字节存储指向溢出页的地址,从而可以找到剩余数据所在的页。Compressed 和 Dynamic 这两种格式采用完全的行溢出方式,记录的真实数据处不会存储该列的一部分数据,只存储 20 个字节的指针来指向溢出页。而实际的数据都存储在溢出页中。
2022年12月12日
130 阅读
0 评论
0 点赞
2022-11-21
此内容被密码保护
加密文章,请前往内页查看详情
2022年11月21日
4 阅读
0 评论
0 点赞
2022-08-31
“ 12306 ” 的架构
限并发带来的思考虽然现在大多数情况下都能订到票,但是放票瞬间即无票的场景,相信大家都深有体会。尤其是春节期间,大家不仅使用 12306,还会考虑“智行”和其他的抢票软件,全国上下几亿人在这段时间都在抢票。“12306 服务”承受着这个世界上任何秒杀系统都无法超越的 QPS,上百万的并发再正常不过了!笔者专门研究了一下“12306”的服务端架构,学习到了其系统设计上很多亮点,在这里和大家分享一下并模拟一个例子:如何在 100 万人同时抢 1 万张火车票时,系统提供正常、稳定的服务。大型高并发系统架构高并发的系统架构都会采用分布式集群部署,服务上层有着层层负载均衡,并提供各种容灾手段(双火机房、节点容错、服务器灾备等)保证系统的高可用,流量也会根据不同的负载能力和配置策略均衡到不同的服务器上。下边是一个简单的示意图:负载均衡简介上图中描述了用户请求到服务器经历了三层的负载均衡,下边分别简单介绍一下这三种负载均衡。① OSPF(开放式最短链路优先)是一个内部网关协议(Interior Gateway Protocol,简称 IGP)OSPF 通过路由器之间通告网络接口的状态来建立链路状态数据库,生成最短路径树,OSPF 会自动计算路由接口上的 Cost 值,但也可以通过手工指定该接口的 Cost 值,手工指定的优先于自动计算的值。OSPF 计算的 Cost,同样是和接口带宽成反比,带宽越高,Cost 值越小。到达目标相同 Cost 值的路径,可以执行负载均衡,最多 6 条链路同时执行负载均衡。②LVS (Linux Virtual Server)它是一种集群(Cluster)技术,采用 IP 负载均衡技术和基于内容请求分发技术。调度器具有很好的吞吐率,将请求均衡地转移到不同的服务器上执行,且调度器自动屏蔽掉服务器的故障,从而将一组服务器构成一个高性能的、高可用的虚拟服务器。③Nginx想必大家都很熟悉了,是一款非常高性能的 HTTP 代理/反向代理服务器,服务开发中也经常使用它来做负载均衡。Nginx 实现负载均衡的方式主要有三种:轮询加权轮询IP Hash 轮询下面我们就针对 Nginx 的加权轮询做专门的配置和测试。Nginx 加权轮询的演示Nginx 实现负载均衡通过 Upstream 模块实现,其中加权轮询的配置是可以给相关的服务加上一个权重值,配置的时候可能根据服务器的性能、负载能力设置相应的负载。下面是一个加权轮询负载的配置,我将在本地的监听 3001-3004 端口,分别配置 1,2,3,4 的权重:#配置负载均衡 upstream load_rule { server 127.0.0.1:3001 weight=1; server 127.0.0.1:3002 weight=2; server 127.0.0.1:3003 weight=3; server 127.0.0.1:3004 weight=4; } ... server { listen 80; server_name load_balance.com www.load_balance.com; location / { proxy_pass http://load_rule; }我在本地 /etc/hosts 目录下配置了 www.load_balance.com 的虚拟域名地址。接下来使用 Go 语言开启四个 HTTP 端口监听服务,下面是监听在 3001 端口的 Go 程序,其他几个只需要修改端口即可:package main import ( "net/http" "os" "strings" ) func main() { http.HandleFunc("/buy/ticket", handleReq) http.ListenAndServe(":3001", nil) } //处理请求函数,根据请求将响应结果信息写入日志 func handleReq(w http.ResponseWriter, r *http.Request) { failedMsg := "handle in port:" writeLog(failedMsg, "./stat.log") } //写入日志 func writeLog(msg string, logPath string) { fd, _ := os.OpenFile(logPath, os.O_RDWR|os.O_CREATE|os.O_APPEND, 0644) defer fd.Close() content := strings.Join([]string{msg, "\r\n"}, "3001") buf := []byte(content) fd.Write(buf) }我将请求的端口日志信息写到了 ./stat.log 文件当中,然后使用 AB 压测工具做压测:ab -n 1000 -c 100 http://www.load_balance.com/buy/ticket 统计日志中的结果,3001-3004 端口分别得到了 100、200、300、400 的请求量。这和我在 Nginx 中配置的权重占比很好的吻合在了一起,并且负载后的流量非常的均匀、随机。具体的实现大家可以参考 Nginx 的 Upsteam 模块实现源码:https://www.kancloud.cn/digest/understandingnginx/202607秒杀抢购系统选型回到我们最初提到的问题中来:火车票秒杀系统如何在高并发情况下提供正常、稳定的服务呢?从上面的介绍我们知道用户秒杀流量通过层层的负载均衡,均匀到了不同的服务器上,即使如此,集群中的单机所承受的 QPS 也是非常高的。如何将单机性能优化到极致呢?要解决这个问题,我们就要想明白一件事:通常订票系统要处理生成订单、减扣库存、用户支付这三个基本的阶段。我们系统要做的事情是要保证火车票订单不超卖、不少卖,每张售卖的车票都必须支付才有效,还要保证系统承受极高的并发。这三个阶段的先后顺序该怎么分配才更加合理呢?我们来分析一下:下单减库存当用户并发请求到达服务端时,首先创建订单,然后扣除库存,等待用户支付。这种顺序是我们一般人首先会想到的解决方案,这种情况下也能保证订单不会超卖,因为创建订单之后就会减库存,这是一个原子操作。但是这样也会产生一些问题:在极限并发情况下,任何一个内存操作的细节都至关影响性能,尤其像创建订单这种逻辑,一般都需要存储到磁盘数据库的,对数据库的压力是可想而知的。如果用户存在恶意下单的情况,只下单不支付这样库存就会变少,会少卖很多订单,虽然服务端可以限制 IP 和用户的购买订单数量,这也不算是一个好方法。支付减库存如果等待用户支付了订单在减库存,第一感觉就是不会少卖。但是这是并发架构的大忌,因为在极限并发情况下,用户可能会创建很多订单。当库存减为零的时候很多用户发现抢到的订单支付不了了,这也就是所谓的“超卖”。也不能避免并发操作数据库磁盘 IO。预扣库存从上边两种方案的考虑,我们可以得出结论:只要创建订单,就要频繁操作数据库 IO。那么有没有一种不需要直接操作数据库 IO 的方案呢,这就是预扣库存。先扣除了库存,保证不超卖,然后异步生成用户订单,这样响应给用户的速度就会快很多;那么怎么保证不少卖呢?用户拿到了订单,不支付怎么办?我们都知道现在订单都有有效期,比如说用户五分钟内不支付,订单就失效了,订单一旦失效,就会加入新的库存,这也是现在很多网上零售企业保证商品不少卖采用的方案。订单的生成是异步的,一般都会放到 MQ、Kafka 这样的即时消费队列中处理,订单量比较少的情况下,生成订单非常快,用户几乎不用排队。扣库存的艺术从上面的分析可知,显然预扣库存的方案最合理。我们进一步分析扣库存的细节,这里还有很大的优化空间,库存存在哪里?怎样保证高并发下,正确的扣库存,还能快速的响应用户请求?另外,搜索公众号GitHub猿后台回复“赚钱”,获取一份惊喜礼包。在单机低并发情况下,我们实现扣库存通常是这样的:为了保证扣库存和生成订单的原子性,需要采用事务处理,然后取库存判断、减库存,最后提交事务,整个流程有很多 IO,对数据库的操作又是阻塞的。这种方式根本不适合高并发的秒杀系统。接下来我们对单机扣库存的方案做优化:本地扣库存。我们把一定的库存量分配到本地机器,直接在内存中减库存,然后按照之前的逻辑异步创建订单。改进过之后的单机系统是这样的:这样就避免了对数据库频繁的 IO 操作,只在内存中做运算,极大的提高了单机抗并发的能力。但是百万的用户请求量单机是无论如何也抗不住的,虽然 Nginx 处理网络请求使用 Epoll 模型,c10k 的问题在业界早已得到了解决。但是 Linux 系统下,一切资源皆文件,网络请求也是这样,大量的文件描述符会使操作系统瞬间失去响应。上面我们提到了 Nginx 的加权均衡策略,我们不妨假设将 100W 的用户请求量平均均衡到 100 台服务器上,这样单机所承受的并发量就小了很多。然后我们每台机器本地库存 100 张火车票,100 台服务器上的总库存还是 1 万,这样保证了库存订单不超卖,下面是我们描述的集群架构:问题接踵而至,在高并发情况下,现在我们还无法保证系统的高可用,假如这 100 台服务器上有两三台机器因为扛不住并发的流量或者其他的原因宕机了。那么这些服务器上的订单就卖不出去了,这就造成了订单的少卖。要解决这个问题,我们需要对总订单量做统一的管理,这就是接下来的容错方案。服务器不仅要在本地减库存,另外要远程统一减库存。有了远程统一减库存的操作,我们就可以根据机器负载情况,为每台机器分配一些多余的“Buffer 库存”用来防止机器中有机器宕机的情况。我们结合下面架构图具体分析一下:我们采用 Redis 存储统一库存,因为 Redis 的性能非常高,号称单机 QPS 能抗 10W 的并发。在本地减库存以后,如果本地有订单,我们再去请求 Redis 远程减库存,本地减库存和远程减库存都成功了,才返回给用户抢票成功的提示,这样也能有效的保证订单不会超卖。当机器中有机器宕机时,因为每个机器上有预留的 Buffer 余票,所以宕机机器上的余票依然能够在其他机器上得到弥补,保证了不少卖。Buffer 余票设置多少合适呢,理论上 Buffer 设置的越多,系统容忍宕机的机器数量就越多,但是 Buffer 设置的太大也会对 Redis 造成一定的影响。虽然 Redis 内存数据库抗并发能力非常高,请求依然会走一次网络 IO,其实抢票过程中对 Redis 的请求次数是本地库存和 Buffer 库存的总量。因为当本地库存不足时,系统直接返回用户“已售罄”的信息提示,就不会再走统一扣库存的逻辑。这在一定程度上也避免了巨大的网络请求量把 Redis 压跨,所以 Buffer 值设置多少,需要架构师对系统的负载能力做认真的考量。代码演示Go 语言原生为并发设计,我采用 Go 语言给大家演示一下单机抢票的具体流程。初始化工作Go 包中的 Init 函数先于 Main 函数执行,在这个阶段主要做一些准备性工作。我们系统需要做的准备工作有:初始化本地库存、初始化远程 Redis 存储统一库存的 Hash 键值、初始化 Redis 连接池。另外还需要初始化一个大小为 1 的 Int 类型 Chan,目的是实现分布式锁的功能。也可以直接使用读写锁或者使用 Redis 等其他的方式避免资源竞争,但使用 Channel 更加高效,这就是 Go 语言的哲学:不要通过共享内存来通信,而要通过通信来共享内存。Redis 库使用的是 Redigo,下面是代码实现:... //localSpike包结构体定义 package localSpike type LocalSpike struct { LocalInStock int64 LocalSalesVolume int64 } ... //remoteSpike对hash结构的定义和redis连接池 package remoteSpike //远程订单存储健值 type RemoteSpikeKeys struct { SpikeOrderHashKey string //redis中秒杀订单hash结构key TotalInventoryKey string //hash结构中总订单库存key QuantityOfOrderKey string //hash结构中已有订单数量key } //初始化redis连接池 func NewPool() *redis.Pool { return &redis.Pool{ MaxIdle: 10000, MaxActive: 12000, // max number of connections Dial: func() (redis.Conn, error) { c, err := redis.Dial("tcp", ":6379") if err != nil { panic(err.Error()) } return c, err }, } } ... func init() { localSpike = localSpike2.LocalSpike{ LocalInStock: 150, LocalSalesVolume: 0, } remoteSpike = remoteSpike2.RemoteSpikeKeys{ SpikeOrderHashKey: "ticket_hash_key", TotalInventoryKey: "ticket_total_nums", QuantityOfOrderKey: "ticket_sold_nums", } redisPool = remoteSpike2.NewPool() done = make(chan int, 1) done <- 1 }本地扣库存和统一扣库存本地扣库存逻辑非常简单,用户请求过来,添加销量,然后对比销量是否大于本地库存,返回 Bool 值:package localSpike //本地扣库存,返回bool值 func (spike *LocalSpike) LocalDeductionStock() bool{ spike.LocalSalesVolume = spike.LocalSalesVolume + 1 return spike.LocalSalesVolume < spike.LocalInStock }注意这里对共享数据 LocalSalesVolume 的操作是要使用锁来实现的,但是因为本地扣库存和统一扣库存是一个原子性操作,所以在最上层使用 Channel 来实现,这块后边会讲。统一扣库存操作 Redis,因为 Redis 是单线程的,而我们要实现从中取数据,写数据并计算一些列步骤,我们要配合 Lua 脚本打包命令,保证操作的原子性:package remoteSpike ...... const LuaScript = ` local ticket_key = KEYS[1] local ticket_total_key = ARGV[1] local ticket_sold_key = ARGV[2] local ticket_total_nums = tonumber(redis.call('HGET', ticket_key, ticket_total_key)) local ticket_sold_nums = tonumber(redis.call('HGET', ticket_key, ticket_sold_key)) -- 查看是否还有余票,增加订单数量,返回结果值 if(ticket_total_nums >= ticket_sold_nums) then return redis.call('HINCRBY', ticket_key, ticket_sold_key, 1) end return 0 ` //远端统一扣库存 func (RemoteSpikeKeys *RemoteSpikeKeys) RemoteDeductionStock(conn redis.Conn) bool { lua := redis.NewScript(1, LuaScript) result, err := redis.Int(lua.Do(conn, RemoteSpikeKeys.SpikeOrderHashKey, RemoteSpikeKeys.TotalInventoryKey, RemoteSpikeKeys.QuantityOfOrderKey)) if err != nil { return false } return result != 0 }我们使用 Hash 结构存储总库存和总销量的信息,用户请求过来时,判断总销量是否大于库存,然后返回相关的 Bool 值。在启动服务之前,我们需要初始化 Redis 的初始库存信息:hmset ticket_hash_key "ticket_total_nums" 10000 "ticket_sold_nums" 0响应用户信息我们开启一个 HTTP 服务,监听在一个端口上:package main ... func main() { http.HandleFunc("/buy/ticket", handleReq) http.ListenAndServe(":3005", nil) }上面我们做完了所有的初始化工作,接下来 handleReq 的逻辑非常清晰,判断是否抢票成功,返回给用户信息就可以了。package main //处理请求函数,根据请求将响应结果信息写入日志 func handleReq(w http.ResponseWriter, r *http.Request) { redisConn := redisPool.Get() LogMsg := "" <-done //全局读写锁 if localSpike.LocalDeductionStock() && remoteSpike.RemoteDeductionStock(redisConn) { util.RespJson(w, 1, "抢票成功", nil) LogMsg = LogMsg + "result:1,localSales:" + strconv.FormatInt(localSpike.LocalSalesVolume, 10) } else { util.RespJson(w, -1, "已售罄", nil) LogMsg = LogMsg + "result:0,localSales:" + strconv.FormatInt(localSpike.LocalSalesVolume, 10) } done <- 1 //将抢票状态写入到log中 writeLog(LogMsg, "./stat.log") } func writeLog(msg string, logPath string) { fd, _ := os.OpenFile(logPath, os.O_RDWR|os.O_CREATE|os.O_APPEND, 0644) defer fd.Close() content := strings.Join([]string{msg, "\r\n"}, "") buf := []byte(content) fd.Write(buf) }前边提到我们扣库存时要考虑竞态条件,我们这里是使用 Channel 避免并发的读写,保证了请求的高效顺序执行。我们将接口的返回信息写入到了 ./stat.log 文件方便做压测统计。单机服务压测开启服务,我们使用 AB 压测工具进行测试: ab -n 10000 -c 100 http://127.0.0.1:3005/buy/ticket 下面是我本地低配 Mac 的压测信息:This is ApacheBench, Version 2.3 <$revision: 1826891=""> Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/ Licensed to The Apache Software Foundation, http://www.apache.org/ Benchmarking 127.0.0.1 (be patient) Completed 1000 requests Completed 2000 requests Completed 3000 requests Completed 4000 requests Completed 5000 requests Completed 6000 requests Completed 7000 requests Completed 8000 requests Completed 9000 requests Completed 10000 requests Finished 10000 requests Server Software: Server Hostname: 127.0.0.1 Server Port: 3005 Document Path: /buy/ticket Document Length: 29 bytes Concurrency Level: 100 Time taken for tests: 2.339 seconds Complete requests: 10000 Failed requests: 0 Total transferred: 1370000 bytes HTML transferred: 290000 bytes Requests per second: 4275.96 [#/sec] (mean) Time per request: 23.387 [ms] (mean) Time per request: 0.234 [ms] (mean, across all concurrent requests) Transfer rate: 572.08 [Kbytes/sec] received Connection Times (ms) min mean[+/-sd] median max Connect: 0 8 14.7 6 223 Processing: 2 15 17.6 11 232 Waiting: 1 11 13.5 8 225 Total: 7 23 22.8 18 239 Percentage of the requests served within a certain time (ms) 50% 18 66% 24 75% 26 80% 28 90% 33 95% 39 98% 45 99% 54 100% 239 (longest request)根据指标显示,我单机每秒就能处理 4000+ 的请求,正常服务器都是多核配置,处理 1W+ 的请求根本没有问题。而且查看日志发现整个服务过程中,请求都很正常,流量均匀,Redis 也很正常://stat.log ... result:1,localSales:145 result:1,localSales:146 result:1,localSales:147 result:1,localSales:148 result:1,localSales:149 result:1,localSales:150 result:0,localSales:151 result:0,localSales:152 result:0,localSales:153 result:0,localSales:154 result:0,localSales:156 ...总结回顾总体来说,秒杀系统是非常复杂的。我们这里只是简单介绍模拟了一下单机如何优化到高性能,集群如何避免单点故障,保证订单不超卖、不少卖的一些策略完整的订单系统还有订单进度的查看,每台服务器上都有一个任务,定时的从总库存同步余票和库存信息展示给用户,还有用户在订单有效期内不支付,释放订单,补充到库存等等。我们实现了高并发抢票的核心逻辑,可以说系统设计的非常的巧妙,巧妙的避开了对 DB 数据库 IO 的操作。对 Redis 网络 IO 的高并发请求,几乎所有的计算都是在内存中完成的,而且有效的保证了不超卖、不少卖,还能够容忍部分机器的宕机。我觉得其中有两点特别值得学习总结:①负载均衡,分而治之通过负载均衡,将不同的流量划分到不同的机器上,每台机器处理好自己的请求,将自己的性能发挥到极致。这样系统的整体也就能承受极高的并发了,就像工作的一个团队,每个人都将自己的价值发挥到了极致,团队成长自然是很大的。②合理的使用并发和异步自 Epoll 网络架构模型解决了 c10k 问题以来,异步越来越被服务端开发人员所接受,能够用异步来做的工作,就用异步来做,在功能拆解上能达到意想不到的效果。这点在 Nginx、Node.JS、Redis 上都能体现,他们处理网络请求使用的 Epoll 模型,用实践告诉了我们单线程依然可以发挥强大的威力。服务器已经进入了多核时代,Go 语言这种天生为并发而生的语言,完美的发挥了服务器多核优势,很多可以并发处理的任务都可以使用并发来解决,比如 Go 处理 HTTP 请求时每个请求都会在一个 Goroutine 中执行。{card-describe title="版权申明"}内容来源网络,版权归原创者所有。除非无法确认,我们都会标明作者及出处,如有侵权烦请告知,我们会立即删除并表示歉意。谢谢!{/card-describe}
2022年08月31日
119 阅读
0 评论
0 点赞
2022-08-17
Ubuntu系统设置时区时间
1、首先输入date -R查看当下系统时间是否一致。2、设置时区,亚洲/上海timedatectl set-timezone Asia/Shanghai3、设置时区时间格式第一行是日期格式,第二行是时间格式sudo date -s MM/DD/YY sudo date -s hh:mm:ss 4、将当前时间写入BIOS避免重启之后失效sudo hwclock --systohc5、再次查看日期是否更改成功date -R
2022年08月17日
151 阅读
0 评论
0 点赞
1
...
7
8
9
...
11
您的IP: